
A two-dimensional decomposition approach for
matrix completion through gossip

Mukul Bhutani
Amazon.com

mbhutani@amazon.com

Bamdev Mishra
Amazon.com

bamdevm@amazon.com

Abstract

Factoring a matrix into two low rank matrices is at the heart of many problems.
The problem of matrix completion especially uses it to decompose a sparse matrix
into two non sparse, low rank matrices which can then be used to predict unknown
entries of the original matrix. We present a scalable and decentralized approach in
which instead of learning two factors for the original input matrix, we decompose
the original matrix into a grid blocks, each of whose factors can be individually
learned just by communicating (gossiping) with neighboring blocks. This elimi-
nates any need for a central server. We show that our algorithm performs well on
both synthetic and real datasets.

1 Introduction

The problem of approximating a matrix by decomposing it into two low rank factor matrices is
useful in solving many machine learning problems [1] including that of recommendation systems
[2]. The problem of building a recommendation system involves having a large, sparse matrix X of
dimensions m × n and finding its low rank decomposition X = UW> where U and W are non
sparse matrices of dimensions m × r and n × r respectively and r � m,n. The product of these
matrices can then be used to find the missing entries of X. Since recommendation systems generally
deal with user data, the security aspect may also become a major concern as one doesn’t want to
compromise the private data of users.

The problem of matrix completion is treated as an optimization problem and can be solved using
gradient search [3, 4]. Parallel versions of gradient search have been used but they still require a
central server [5, 6]. This dependency on a central server during most part of learning is one which
we intend to eliminate. [7] follows an approach in which the input matrix is decomposed (as groups
of columns) into l parts which were all processed by different agents. Each agent i estimates its own
version of the original matrix, Xi, as UW>

i . Also, the matrix U has to be synchronized between
all the agents after each round of iteration. And thus each agent has the same (and also complete)
view of U after each iteration. In the approach followed by [8], in the decomposition X = UW>,
each row of X and U is stored in different nodes and a public matrix W is exchanged between them.
Random walks are performed to bring convergence in W. However, here too a single agent takes
care of the complete row.

In contrast to the works discussed above, we present a decomposition strategy in a way such that
the matrix is decomposed not only row wise [9], but also in a column wise fashion. We decompose
the matrix X into a two dimensional rectangular grid such that each decomposed part (which we
henceforth call a block) can be factorized into its own local, row rank factors Us and Ws. These
blocks can then be processed by different agents. The individual blocks just gossip with their
neighbors, trying to reach consensus and thus no communication happens with a central server during
the learning phase. Once the learning is done, a final culmination of Us and Ws is performed.

ar
X

iv
:1

71
1.

07
68

4v
2 

 [
cs

.L
G

] 
 1

1 
Ja

n 
20

18



Supper3,3 S lower4,5

(i, j) (i, j + 1)

(i+ 1, j)

convergence in Us

co
n
ve
rg
en
ce

in
W

s

Supper structure

(i, j)(i, j − 1)

(i− 1, j)

convergence in Us

co
n
ve
rg
en
ce

in
W

s

S lower structure

Figure 1: General decomposition of a matrix X into a grid of 5× 6 blocks. Two particular structures,
Supper45 and S lower

33 , are highlighted. If X had dimensions 500 × 600, then each of the 5 × 6 block
would have 100× 100 entries.

2 Decomposition pattern

The input matrix X is decomposed into a p× q dimensional rectangular grid of blocks (Figure 1).
Each block can be referred by using the indices i and j corresponding to its row and column in the
decomposition respectively. Each Xij can then be factored as Uij W

>
ij as usual. We try to learn

Us and Ws corresponding to each of these blocks and then in the end, combine them appropriately
to form universal U and W which can then be used to find the missing entries of the original matrix
X. These individual blocks gossip with their neighbors (blocks sharing an edge) and try to reach
a consensus. Each row tries to reach to a consensus in terms of U and each column tries to reach
a consensus for W. All these Us and Ws are appended together to from the universal U and W
which represents factors of original matrix X. This pattern of communication results in a natural
structure of a group of blocks, which can be thought of as gossiping. Let’s call these groups of blocks
or structures as Supperand S lower(shown in Figure 1). We call one of the blocks of the structure
as pivot block indexed as (i, j) and the other two blocks are indexed relatively. Each block can
belong to one or more structures depending on its position in the grid. Each of these structures is
an independent computational unit and thus any two non overlapping structure can potentially be
processed independently by different agents.

3 Problem formulation

We model the matrix completion problem as an optimization problem and the objective function of
our two dimensional decomposed formulation can be derived by doing the analysis of our Supperand
S lowerstructures. For Supper, for blocks (i, j) and (i+ 1, j), we try to bring convergence between
their Ws and for the blocks (i, j) and (i, j + 1) we try to bring the convergence to their Us. We
define the cost of a structure as comprising of two components: f and d. The f cost component
of a block measures how close it is to the original matrix and the d cost component measures the
consensus between two adjacent Us (denoted as dU ) or Ws (denoted as dW ). For a block indexed at
(i, j) it can be written as:

fij =
∥∥Xij −UijW

>
ij

∥∥2
F
, dUij = ‖Uij −Uij+1‖2F , and dWij = ‖Wij −Wi+1j‖2F , (1)

where ‖Z‖2F denotes the square of the Frobenius norm of Z. Consequently, the the total cost (g) for a
structure turns out to be:

gstructure = f(for all the three blocks) + ρdU + ρdW ,

where ρ is the weight factor. Hence, the total cost for an Supperstructure turns out to be:

gupperij = fij + fi+1j + fij+1 + ρ ‖Uij −Uij+1‖2F + ρ ‖Wij −Wi+1j‖2F . (2)

For S lower, we can derive the costs in similar fashion. For a decomposition of matrix X into p× q,
our end goal is to minimize the sum of costs for all Supperand S lowerpossible, i.e.,

min
Uij ,Wij

p,q∑
i=1,j=1

gupperij + glower
ij + λ ‖Uij‖2F + λ ‖Wij‖2F , (3)

2



1

1

1

1

1

222

2

2

2

2 2

2

2

2

2

1

1

1

1

1

2

2

2

2

2

1 12 2 2

(a) The relative number of times a
block is selected while calculating
the gradient of dU .

1

222

2

2

2

2

2

2

2

1

2

2

2

2

1 1

1 1 1

1 1 1

222

2

2

2

222

2

2

2

(b) The relative number of times a
block is selected while calculating
the gradient of dW .

1

12

23 3 3

3

3

3

3

333

3

3

3

3 6 6 6

666

6 6 6

666

(c) The number of times a particu-
lar block gets repeated while cal-
culating gradient for f .

Figure 2: Relative frequencies of selection of different blocks for a grid of size 6× 5.

where the cost for gupperij (and similarly glower
ij ) can be seen from (2) if a Sstruct is valid or is 0

otherwise and λ is the regularization parameter added according to [10].

4 Algorithm

Our basic online sequential algorithm in Algorithm 1 is very simple and uses the stochastic gradient
descent (SGD) algorithm for (3). We have an input matrix X of dimensions m× n, which we divide
into a grid of p × q blocks. Here p and q are the hyper parameters which would govern how one
wishes to distribute the data. This in turn can depend upon the number of agents which one wishes to
employ. Each of these blocks can be factored into corresponding Uij and Wij having rank r. These
Us and Ws are initialized randomly. We then randomly sample a structure out of the various possible
ones (details of which were described in Section 2), updateThroughSGD calculates the gradient
and updates the corresponding three Us and Ws (corresponding to the three blocks comprising that
structure). The process of sampling and updating parameters is repeated until convergence is reached.
To update the λ [10] we use γt = a/(1+(bt)), where t is the number of iterations and a, b are scalars.
After Algorithm 1 has converged, all the Us and Ws are finally combined to form U and W of size
m× r and n× r, respectively.

Normalizing representations of blocks. Owning to our methodology of decomposition, the number
of structures of which a block may be a part of is different for various blocks. Since, finally in (3) we
want all the blocks to have equal representation, we multiply a coefficient to each block to normalize
the times a block may be selected for an update. The relative frequency of a block getting selected in
given in Figure 2 and thus the coefficients we use are the inverse of it.

Algorithm 1: Basic update algorithm via SGD
input :Decomposed blocks for X and rank r.
output :Us, Ws.

1 Initialize all Us and Ws.
2 while convergence is not reached do
3 Sstruct= randomly pick a valid structure.
4 [Us, Ws] = updateThroughSGD(Xs, Sstruct).
5 Check for convergence.
6 end

5 Numerical experiments

To demonstrate the efficacy of our algorithm, we perform two sets of experiments. In the first set, we
run our algorithm on synthetically generated data sets and calculate the cost. For the second set of
experiments, we demonstrate our algorithm working on some popular public datasets. We use the
root mean squared error (RMSE) to gauge the performance of our algorithm.

Experiments on synthetic data sets. We randomly generate a synthetic matrix subject to a rank
constraint. Of this we mask majority of the elements thus generating our train matrix. Similarly,
a test matrix is also generated by choosing a fraction of elements in the original matrix which got
masked and weren’t selected for generating the train matrix and is used for evaluation.

3



Table 1: Parameters used for various experiments.
Parameter Exp#1 Exp#2 Exp#3 Exp#4 Exp#5 Exp#6

ρ (weight factor) 1e3 1e3 1e3 1e3 1e3 1e3
λ (regularization parameter) 1e-9 1e-9 1e-9 1e-9 1e-9 1e-9

p× q (dimensions of decomposed grid) 4× 4 4× 5 5× 5 6× 6 5× 5 5× 5
m× n (input matrix dimensions) 500× 500 500× 500 500× 500 500× 500 5000× 5000 10000× 10000
a (scalar in stepsize tuning) 5.0e-04 5.0e-04 5.0e-04 5.0e-04 5.0e-04 5.0e-04
b (scalar in stepsize tuning) 5.0e-07 5.0e-07 5.0-07 5.0e-07 5.0e-06 5.0e-07

Table 2: Empirical proof of convergence of the algorithm.
NumIterations Exp#1 Exp#2 Exp#3 Exp#4 Exp#5 Exp#6

0 1.45e+05 1.45e+05 1.45e+05 1.44e+05 6.42e+05 6.66e+07
80000 6.92e-03 1.32e-01 1.45e+00 4.74e+02 1.26e+05 2.13e+04
160000 9.62e-06 7.65e-05 1.44e-04 9.94e-01 2.83e+02 4.06e+00
240000 convergence 1.07e-05 1.25e-05 1.04e-02 2.85e-01 9.96e-03
260000 convergence 1.21e-05 4.41e-03 7.39e-02 2.78e-03
280000 convergence 1.96e-03 2.09e-02 convergence
300000 9.28e-04 6.44e-03
400000 convergence convergence

Table 1 describe various hyper parameters which were used for the experiments and Table 2 shows
the costs (i.e.,

∑p,q
i=1,j=1 fij + λ ‖Uij‖2F + λ ‖Wij‖2F ) as iterations increase.

Table 3: Experiments using real datasets.

Number of blocks p× q

Rank 2× 2 3× 3 4× 4 5× 5 10× 10

MovieLens 1 million
5 0.87 0.99 1.04 0.99 1.13

10 0.86 0.99 1.03 1.00 1.22
15 0.86 0.99 1.03 0.99 1.34

MovieLens 10 million
5 0.97 0.95 0.98 0.97 1.07

10 0.97 0.95 1.00 0.99 1.25
15 0.98 0.96 1.03 1.02121 1.41

MovieLens 20 million
5 0.95 0.92 0.93 0.99 1.01

10 0.96 0.93 0.93 1.02 1.11
15 0.96 0.94 0.93 1.05 1.24

Netflix
5 1.03 0.98 1.13 1.06 1.02

10 1.00 0.98 1.14 1.02 1.02
15 1.00 1.11 1.16 1.02 1.03

Experiments on real data sets. We demon-
strate the efficacy of our algorithm on widely
used, high dimensional, and highly sparse
public datasets which are frequently used
for benchmarking. The input data is split in
a 80 - 20 ratio. The training is done with
the 80 percent part. The 20 percent part is
kept for testing on which we calculate and re-
port the RMSE. All the experiments are per-
formed with tuned parameters. Table 3 lists
the RMSE we received for various datasets
with different decomposition pattern (p× q).

Conclusion from the experiments. As we
can see from the above experiments, the al-
gorithm is able to learn different Us and
Ws corresponding to different blocks and
reaches to convergence in all the cases. The
order of reduction of the cost on synthetic
datasets is 7 to 10 in all the cases. The ex-
perimentation on real datasets also provide
enough evidence on learning proving that we can learn global factors even though we may be
processing the data in many smaller and independent parts.

6 Conclusion

We proposed a novel algorithm for matrix completion, where the data is decomposed along two
dimensions, both row wise and column wise. It uses the gossip paradigm for communicating between
the independent decomposed units. We get a decomposition in which individual decomposed units
reach convergence by just talking to their neighbors, and hence, being independent of the master
during the learning phase. Our initial experiments on the synthetic and real datasets shows the efficacy
of our algorithm. Exploiting the fact that many of the Sstruct do not contain any overlapping blocks,
and hence can be processed in parallel, will be a topic of future research.

4



References

[1] Azar Yossi, Fiat Amos, Karlin Anna R., McSherry Frank, and Saia Jared. Spectral analysis of data. In
33rd Symposium on Theory of Computing (STOC), pages 619–626, 2001.

[2] Petros Drineas, Iordanis Kerenidis, and Prabhakar Raghavan. Competitive recommendation systems. In
34th annual ACS symposium on Theory of Computing (STOC), pages 82–90, 2002.

[3] Genevieve Gorrell. Generalized hebbian algorithm for incremental singular value decomposition in natural
language processing. In 11th Conference of the European Chapter of the Association for Computational
Linguistics (EACL), 2006.

[4] Naiyang Guan, Dacheng Tao, Zhigang Luo, and Bo Yuan. Nenmf: An optimal gradient method for
nonnegative matrix factorization. IEEE Transactions on Signal Processing 60, 6:2882–2898, 2012.

[5] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Ng, and Kunle
Olukotun. Map-reduce for machine learning on multicore. In Neural Information Processing Systems
(NIPS), pages 281–288, 2006.

[6] Quoc Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg Corrado, Jeff Dean,
and Andrew Ng. Building high-level features using large scale unsupervised learning. In International
Conference in Machine Learning, pages 81–88, 2012.

[7] Qing Ling, Yangyang Xu, Wotao Yin, and Zaiwen Wen. Decentralized low-rank matrix completion. In
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012.

[8] István Hegedűs, Márk Jelasity, Levente Kocsis, and András A. Benczúr. Fully distributefully distributed
robust singular value decomposition. In 14-th IEEE International Conference on Peer-to-Peer Computing
(P2P), 2014.

[9] Bamdev Mishra, Hiroyuki Kasai, Pratik Jawanpuria, and Atul Saroop. A Riemannian gossip approach to
decentralized subspace learning on grassmann manifold. Technical report, arXiv preprint arXiv:1705.00467,
2016.

[10] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning.
Technical report, arXiv preprint arXiv:1606.04838, 2016.

5


	1 Introduction
	2 Decomposition pattern
	3 Problem formulation
	4 Algorithm
	5 Numerical experiments
	6 Conclusion

